Matrices with circular symmetry on their unitary orbits and $C$-numerical ranges

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Matrices with Circular Symmetry on Their Unitary Orbits and C-numerical Ranges

We give equivalent characterizations for those n x n complex matrices A whose unitary orbits %?(A) and C-numerical ranges WC{A) satisfy ei8&(A) = f/(A) or e'e WC(A) = WC(A) for some real 0 (or for all real 0 ). In particular, we show that they are the block-cyclic or block-shift operators. Some of these results are extended to infinite-dimensional Hubert spaces.

متن کامل

Higher–rank Numerical Ranges of Unitary and Normal Matrices

We verify a conjecture on the structure of higher-rank numerical ranges for a wide class of unitary and normal matrices. Using analytic and geometric techniques, we show precisely how the higher-rank numerical ranges for a generic unitary matrix are given by complex polygons determined by the spectral structure of the matrix. We discuss applications of the results to quantum error correction, s...

متن کامل

Properties of matrices with numerical ranges in a sector

Let $(A)$ be a complex $(ntimes n)$ matrix and assume that the numerical range of $(A)$ lies in the set of a sector of half angle $(alpha)$ denoted by $(S_{alpha})$. We prove the numerical ranges of the conjugate, inverse and Schur complement of any order of $(A)$ are in the same $(S_{alpha})$.The eigenvalues of some kinds of matrix product and numerical ranges of hadmard product, star-congruen...

متن کامل

Constraint Unitary Dilations and Numerical Ranges

It is shown that each contraction A on a Hilbert space H, with A + A I for some 2 R, has a unitary dilation U on H H satisfying U + U I. This is used to settle a conjecture of Halmos in the aarmative: The closure of the numerical range of each contraction A is the intersection of the closures of the numerical ranges of all unitary dilations of A. By means of the duality theory of completely pos...

متن کامل

Some results on higher numerical ranges and radii of quaternion matrices

‎Let $n$ and $k$ be two positive integers‎, ‎$kleq n$ and $A$ be an $n$-square quaternion matrix‎. ‎In this paper‎, ‎some results on the $k-$numerical range of $A$ are investigated‎. ‎Moreover‎, ‎the notions of $k$-numerical radius‎, ‎right $k$-spectral radius and $k$-norm of $A$ are introduced‎, ‎and some of their algebraic properties are studied‎.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 1991

ISSN: 0002-9939

DOI: 10.1090/s0002-9939-1991-1041014-5